a2 United States Patent

Kolam et al.

US009253013B1

US 9,253,013 B1
*Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(1)

(52)

(58)

EFFICIENT DELIVERY OF CONTENT BY
VIRTUALIZATION OF DYNAMIC
INTERACTION WITH THE DOCUMENT
OBJECT MODEL

Inventors: Hariharan Kolam, Palo Alto, CA (US);
Brian Kennedy, Mountain View, CA
(US); Rajaram Gaunker, Bangalore
(IN); Raghu Batta Venkat, Palo Alto,

CA (US)

Assignee: Instart Logic, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 564 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/563,554

Filed: Jul. 31, 2012

Int. CL.

GO6F 15/16 (2006.01)

HO4L 29/08 (2006.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC HO4L 29/08072 (2013.01); HO4L 29/06

(2013.01)
Field of Classification Search
USPC e 709/203

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,554,832 B1* 10/2013 Moskovitz GO6F 9/54
370/411

2008/0052387 Al* 2/2008 Heinz ... HO4L 41/5025
709/223

2008/0077653 Al* 3/2008 Mortis GO6F 17/30896
709/203

2010/0008580 Al* 1/2010 Mizuno GO6K 9/2054
382/176

* cited by examiner

Primary Examiner — Emmanuel I Moise
Assistant Examiner — Mahran Abu Roumi
(74) Attorney, Agent, or Firm — Van Pelt, Yi and James LL.P

&7

A method of updating a document object model (DOM) is
disclosed. A request by a web browser for information to
update the DOM is intercepted by intercepting an interaction
with the DOM. The request is converted to a server request as
part of a client-server protocol, requesting at least a portion of
the information from a server. The server request is sent to the
server. A first server response including at least a portion of
the information from the server is received. The first server
response is processed according to the client-server protocol
to determine a first update to the DOM. The first update is
applied to the DOM.

ABSTRACT

40 Claims, 6 Drawing Sheets

Web browser sends an HTTP request
message to edge server requesting the
HTML webpage file

602

Edge server sends the HTML webpage file
to web browser in an HTTP response
message.

|_poa

1!

Web browser builds a DOM tree

606
-

¥

Client sends a request to edge server
requesting a first segment of the image file
to be downloaded

608
L~

T

Edge server sends the first segment of the
image file to client

610
L~

ke

- //B\\\\ 21 2

- -
" Any events Indlcating that refreshing of -~
“~__ image node should be delayed? -
e //
\\\ 7
T~

INO

— |

Yes

Client sends a second request to edge server|
requesting the remaining portions of the
image file to be downloaded

614

l

[Edge server sends the second segment of thel
image file to client

U.S. Patent Feb. 2, 2016 Sheet 1 of 6 US 9,253,013 B1

104

106
Web Browser | «—— Server
File(s) or content
FIG. 1

102
/

U.S. Patent Feb. 2, 2016 Sheet 2 of 6

US 9,253,013 B1

200
<html|>
<head>
<title>Welcomex<l/title>
</head>
<body>

<h1>HelloWorld </h1>

<video>

</video>
¢ <script type = “text/javascript™>
- <l--scrip
¢ ***>Some javascript code is placed here

</scri pt>
kN

</body>
html>

<source src = “url for video” type = “video/ogg” />

*kk

Script
FIG. 2

U.S. Patent Feb. 2, 2016 Sheet 3 of 6 US 9,253,013 B1

I
l
I
[-> Document :
|-> Element (<htmi>) i

[-> Element (<body>) :

|-> Element (<div>) :

|-> text node :

|-> Anchor !

|-> text node |

|-> Form !

|-> Text-box |

|-> Text Area :

[-> Radio Button :

|-> Check Box l

[-> Select i

[-> Button :

l

|

FIG. 3

U.S. Patent Feb. 2, 2016 Sheet 4 of 6 US 9,253,013 B1

408
Edge Server

>

404

400
FIG. 4

¥
juslo

=

lasmolg gspn ™

(
406

[
402

U.S. Patent Feb. 2, 2016 Sheet 5 of 6 US 9,253,013 B1

Web browser sends an HTTP request
message to edge server requesting the ~

HTML webpage file

!

Edge server sends the HTML webpage file /_/504
to web browser in an HTTP response
message.

!

[
o]
o

502

506
Web browser builds a DOM tree
v
Web browser sends a GET request in its 508

native form to edge server 408, requesting P
for an image resource

\2
. 510
Edge server sends dummy content in _

response, causing web browser to create a
dummy node in the DOM tree

J 512
Client binds to the dummy node —

J

Client sends a request to edge server 514
requesting a first segment of the image file |/
to be downloaded

L
516
Edge server sends the first segment of the L

image file to client

A}

Client sends a second request to edge server| 518
requesting the remaining portions of the
image file to be downloaded

A4

Edge server sends the second segment of the /_/520
imagc filc to clicnt FIG. 5

U.S. Patent Feb. 2, 2016 Sheet 6 of 6 US 9,253,013 B1

[*2]
(]
(e»]

Web browser sends an HTTP request 602
message to edge server requesting the P
HTML webpage file

!

Edge server sends the HTML webpage file)04
to web browser in an HTTP response
message.

!

606
Web browser builds a DOM tree | —/
N2
Client sends a request to edge server 608

requesting a first scgment of the image file |/
to be downloaded

\2

610

Edge server sends the first segment of the [—
image file to client

k

L)1 2
/// \\\

// \\
7 e
\/// Any events indicating that refreshing of ™~

S image node should be delayed? o

. / Yes

. —~
T —

~ -
—

lNo

Client sends a second request to edge server 614
requesting the remaining portions of the —
image file to be downloaded

v 616

Edge server sends the second segment of the
image file to client

FIG. 6

US 9,253,013 Bl

1
EFFICIENT DELIVERY OF CONTENT BY
VIRTUALIZATION OF DYNAMIC
INTERACTION WITH THE DOCUMENT
OBJECT MODEL

BACKGROUND OF THE INVENTION

Typically, a web browser needs to receive the dependent
resources associated with different links and URLs before it
can complete the rendering of a webpage. The startup wait
time experienced by an end-user of a browsing session may
be insignificant in low-latency networks, such as wired Eth-
ernet networks, but unacceptably long for an end-user in
higher-latency networks, such as cellular 3G networks.
Therefore, improved techniques for delivering information
corresponding to a webpage would be desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a block diagram illustrating an embodiment of a
web browser accessing webpages and other information
through a network.

FIG. 2 is a diagram illustrating an embodiment of a
webpage 200 described by an HTML file.

FIG. 3 is a diagram illustrating an embodiment of a DOM
tree 300.

FIG. 4 is a block diagram illustrating an embodiment of a
client-server system 400 for virtualizing a DOM of a web
browser.

FIG. 5 is a diagram illustrating an embodiment of a flow
diagram 500 for optimized delivery of an image resource
associated with a webpage.

FIG. 6 is a diagram illustrating an embodiment of a flow
diagram 600 for optimized delivery of an image resource
associated with a webpage.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the

10

15

20

25

30

35

40

45

50

55

60

2

following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1 is a block diagram illustrating an embodiment of a
web browser accessing webpages and other information
through a network. As shown in FIG. 1, a web browser 102 is
connected to a server 104 (e.g., an edge server) through a
network 106. Network 106 may be any combination of public
or private networks, including intranets, local area networks
(LANs), wide area networks (WANSs), radio access networks
(RANs), Wi-Fi networks, the Internet, and the like. Web
browser 102 may run on different types of devices, including
laptop computers, desktop computers, tablet computers,
smartphones, and other mobile devices.

A webpage accessed by web browser 102 may be described
by different markup languages, including Hypertext Markup
Language (HTML), Extensible Markup Language (XML),
and the like. The webpage may also be described by different
scripting languages, including JavaScript Object Notation
(JSON), and the like. The webpage may be described by other
custom languages as well. HTML is used hereinafter as an
example of the various languages for describing webpages.
Note that the examples of HTML are selected for illustration
purposes only; accordingly, the present application is not
limited to these specific examples.

FIG. 2 is a diagram illustrating an embodiment of a
webpage 200 described by an HTML file. To display the
webpage, web browser 102 sends a Hypertext Transfer Pro-
tocol (HTTP) request message to server 104 requesting the
HTML webpage file. After server 104 locates the requested
HTML webpage file, server 104 returns the requested HTML
webpage file in an HTTP response message to web browser
102. As web browser 102 begins to render the webpage on a
screen, web browser 102 parses the received webpage file and
builds a data structure to represent the various components of
the webpage in a local memory.

The Document Object Model (DOM) is a standardized
model supported by different web browsers, e.g., Internet
Explorer, Firefox, and Google Chrome, to represent the vari-
ous components of a webpage. The DOM is a cross-platform
and language-independent convention for representing and
interacting with objects in HTML documents, as well as
XHTML and XML documents. Objects in a DOM tree may
be addressed and manipulated using methods on the objects.
The public interface of a DOM is specified in its application
programming interfaces (APIs).

The DOM standard includes different levels. DOM core
level 0 and level 1 are the core standards supported by all web
browsers, while DOM levels 2 and above are extensions to
DOM core level 0 and level 1, which can be optionally sup-
ported by different web browsers. DOM core level 0 and level
1 define a minimal set of objects and interfaces for accessing
and manipulating document objects. It provides a complete
model for an entire HTML document, including the means to
change any portion of the document.

The DOM standard represents documents as a hierarchy of
node objects, called a DOM tree. Some types of nodes may
have child nodes of various types, and others are leaf nodes
that cannot have any object below them in the document
structure hierarchy.

FIG. 3 is a diagram illustrating an embodiment of a DOM
tree 300. As shown in FIG. 3, the topmost node, or root, of

US 9,253,013 Bl

3

DOM tree 300 is the document object. A document object
represents an entire HTML (or XML) document, and it pro-
vides the primary access to the document’s data. The element
object represents an element in the HTML document. Other
types of nodes in the DOM tree may include text nodes,
anchors, text-boxes, text areas, radio buttons, check boxes,
selects, buttons, and the like.

With continued reference to FIG. 2, when web browser 102
renders webpage 200 on a screen, web browser 102 parses the
received HTML webpage file and builds a DOM tree to rep-
resent the various components of webpage 200 in a local
memory. For example, when the image tag (shown as in FIG. 2) is parsed by web browser
102, the image is represented as an image object, and the
image object is inserted into the DOM tree accordingly.

After the webpage file is parsed and the corresponding
DOM tree is created, the entire DOM tree can be traversed to
retrieve any dependent resources (e.g., images, audio clips, or
videos) indicated by any of the nodes in the DOM tree via a
network. For example, the image object corresponding to the
image tag in webpage 200 redirects web browser 102 to fetch
an image file from an uniform resource locator (URL).
Accordingly, web browser 102 sends a request via a network,
requesting the image resource to be downloaded. There are
two ways a request may be issued: statically, in which case it
is the browser which manipulates the DOM; or dynamically,
in which case the DOM manipulation is done by Javascript. In
response to the request, the requested dependent resource is
sent to web browser 102 via a network.

For example, if the nodes of the DOM tree include N
different links and/or URLs, N separate GET requests (e.g., N
separate HTTP GET requests) are sent via a network request-
ing the dependent resources to be sent to web browser 102. In
response, N separate GET responses (e.g., N separate HT'TP
GET responses) are sent to web browser 102, delivering the
dependent resources to web browser 102.

The round trip time or network response time for a GET
request to arrive at an edge server and for its corresponding
GET response to arrive at web browser 102 is dependent on
the latency of the network, which is different for different
types of networks. The network may be any combination of
different types of public or private networks, including intra-
nets, local area networks (LANs), wide area networks
(WANS’s), radio access networks (RANs), Wi-Fi networks, the
Internet, and the like. Therefore, the latency associated with
the network may vary depending on its network type(s).

Some networks have relatively lower network latency. For
example, the network latency associated with WANs or Wi-Fi
networks is relatively low, e.g., on the order of 10 millisec-
onds. Suppose the number of links and/or URLs included in
the DOM tree, N, is equal to twenty. The total network latency
associated with receiving the dependent resources associated
with the twenty links and/or URLs from the edge server, then,
is approximately 200 milliseconds. To improve network per-
formance, present day browsers have become more efficient
in reusing connections to the same server, such that typically
less than 20% of the connections may be fresh connections.

Some networks have relatively higher network latency. For
example, the network latency associated with a 3’ generation
mobile telecommunications (3G) network, is relatively high,
e.g., on the order of 100 milliseconds. In this instance, the
total network latency associated with receiving the dependent
resources associated with the twenty links and/or URLs from
the edge server is then on the order of 2 seconds.

Since the network latency associated with different types
of networks varies widely, and web browser 102 needs to
receive the dependent resources associated with the links and

30

40

45

4

URLSs before web browser 102 can complete the rendering of
webpage 200, the startup wait time experienced by the end-
user of the browsing session may be insignificant in low-
latency networks, such as Wi-Fi networks, but unacceptably
long for an end-user in higher-latency networks, such as 3G
networks. Therefore, improved techniques for delivering
information corresponding to a webpage would be desirable.

FIG. 4 is a block diagram illustrating an embodiment of a
client-server system 400 for virtualizing a DOM of a web
browser. Virtualization of a DOM of a web browser allows the
client-server system to take control of the DOM for different
kinds of optimizations, while keeping the virtualization trans-
parent to the web browser. A web browser 402 accesses
webpages and other information through a network 404.
When web browser 402 sends any network messages onto
network 404 that are related to the downloading of webpages
or other information, the messages may be either intercepted
and processed by a client 406, or directly received and then
processed by an edge server 408 supporting virtualization.
Webpages or other information related to the webpages that
are sent to web browser 402 may be intercepted, filtered,
processed, or provided by client 406 or edge server 408. In
addition, method API calls by web browser 402 or any Java-
Script code to manipulate the objects in a DOM tree may be
intercepted, processed, or modified by client 406. Client 406
may also manipulate the DOM tree by making the appropriate
method API calls to the DOM tree. As a result, client 406 and
edge server 408 together create a virtualization engine for the
DOM of web browser 402. The virtualization engine may
access and manipulate a DOM ftree, including the creation,
deletion, or update of nodes within the DOM tree.

Virtualization of the DOM of web browser 402 may be
applicable to different types of optimization. In some
embodiments, using the virtualization engine, optimized
delivery of information over a network by segmentation and
reprioritization of downloaded information can be achieved.
For example, using the virtualization engine, the delivery of
the information (e.g., the order in which the information is
delivered or the granularity of the information delivered) and
the actual content of the delivered information corresponding
to any nodes of the DOM tree may be altered, thereby speed-
ing up the rendering of a webpage, without compromising the
end-user’s experience.

In some embodiments, the virtualization of the DOM of
web browser 402 is transparent to web browser 402. In some
embodiments, the virtualization of the DOM of web browser
402 is also transparent to the end-users. The end-users are not
required to install any plugins. In some embodiments, the
virtualization of the DOM of web browser 402 is also trans-
parent to the content publishers, without requiring the content
publishers to change any codes. In some embodiments, client
406 may be injected into web browser 402 based on stan-
dards-based (e.g., HTML or JavaScript) procedures. For
example, after edge server 408 receives a request from web
browser 402 requesting an HTML webpage file, server 408
may parse the HTML webpage file, inject client 406 into the
HTML webpage file, and then send the response back to web
browser 402. In some embodiments, client 406 may be
injected by adding JavaScript client code in the head section
of'the HTML webpage file.

Virtualization of the DOM of web browser 402 includes
handling static and dynamic interactions with the DOM of
web browser 402. Both types of interactions may be inter-
cepted or virtualized by the virtualization engine.

Dynamic interactions with the DOM of web browser 402
include interactions that are effected by JavaScripts (e.g.,
Ajax). The DOM of web browser 402 is virtualized by having

US 9,253,013 Bl

5

client 406 intercept and virtualize method API calls to create,
delete, or update elements in the DOM. In some embodi-
ments, only DOM core level 1 APIs, which are supported by
all standardized web browsers, are intercepted and virtual-
ized. The DOM core level 1 APIs for manipulating the DOM
tree are supplanted by the equivalent JavaScript interfaces of
the virtualization engine.

Static interactions to the DOM of web browser 402 include
interactions corresponding to static HTML tags in an HTML
webpage file (e.g., the tag as
shown in FIG. 2). An HTML tag redirects web browser 402 to
fetch a dependent resource (e.g., an image file) from an URL.
Because the static GET request is not made via a JavaScript,
the static request is not intercepted by client 406. Instead, the
static request is sent by web browser 402 in its native form and
then routed over the network, e.g., by means of DNS resolu-
tion, to an edge server 408 supporting virtualization.

In some embodiments, edge server 408 may discern
whether a GET request is sent by web browser 402 or client
406 using a signature-based scheme, thus enabling edge
server 408 to handle the static case as mentioned above. For
example, if a GET request was sent by client 406, the GET
request would be stamped with a predetermined signature.
Conversely, if the GET request was sent directly from web
browser 402, as in the static case, the GET request would not
be stamped with the predetermined signature.

In some embodiments, when a GET request is sent directly
from web browser 402 in a static case, edge server 408 may
send dummy content in response, causing web browser 402 to
create adummy node in the DOM tree. At the same time, edge
server 408 may also notify client 406, e.g., by sending a
JavaScript, that a dummy node has just been created in the
DOM tree, thereby eliminating the need for client 406 to poll
the DOM tree for any new dummy nodes added to the DOM
tree. Client 406, being notified of the newly created dummy
node in the DOM tree, may dynamically update the dummy
node with the actual content by issuing one or more JavaS-
cript requests to edge server 408. In response to the one or
more requests, edge server 408 sends one or more JavaScript
updates, which are then intercepted by client 406, which may
then populate the dummy node with the actual image content.

Using the virtualization engine, optimized delivery of
information over a network by segmentation and reprioriti-
zation of downloaded information can be achieved. Note that
the delivery of different information to web browser 402 may
be determined by the type of the information. For example,
dependent resources such as images, audio clips, and videos
may be delivered using different techniques that are opti-
mized based on the type of resource. In some embodiments,
the virtualization engine may selectively alter or modify the
delivery of only certain types of information (e.g., images).
Images are used hereinafter as an example of the various
dependent resources that can be efficiently downloaded to
web browser 402 by the virtualization engine. Note that the
examples of downloading images are selected for illustration
purposes only; accordingly, the present application is not
limited to these specific examples only.

In some other techniques, a compressed image is encoded
in a format such that the image file is divided into a series of
scans. The first scan shows the image at a lower quality, and
the following scans gradually improve the image quality. For
example, an image in progressive JPEG format is compressed
in multiple passes of progressively higher detail. The initial
passes include lower frequency components of the image,
while the subsequent passes include higher frequency com-
ponents of the image. Rendering an image in progressive
JPEG format shows a reasonable preview of the image after a

5

10

15

20

25

30

35

40

45

50

55

60

65

6

first pass of rendering of the lower frequency components of
the image, with the image progressively turning sharper with
higher detail after subsequent passes. A web browser can
begin displaying an image encoded in progressive JPEG for-
mat as it is being downloaded from the network, by rendering
each successive pass of the image as it is downloaded and
received. Doing so improves on the startup time experienced
by the end-user. Nonetheless, upon a GET for an image, the
entirety of the image is downloaded. In some instances, com-
ponents of the webpage other than the image may have higher
priority than the details of the progressively encoded image
contained in the subsequent passes, and it would be advanta-
geous to download these important components of the web
page before the whole image. In some instances, it is prefer-
able to deploy the bandwidth used to download the whole
image to instead download other important components of the
webpage. However, such prioritization of webpage content is
lost when the image is treated as a single binary content.

Therefore, in some embodiments, the startup wait time can
be reduced by dividing a progressive JPEG image file (or
other image files that are compressed in multiple passes of
progressively higher detail) into a plurality of segments based
on priorities, e.g., frequency. Having control of both ends of
the communication in a client and server system, the lower
frequency components of the image can be requested by
client 406 and sent by edge server 408 first, and then the
higher frequency components can be requested by client 406
and sent by server 408 dynamically to refresh and sharpen the
image.

Since a webpage may include content retrieved by multiple
GET requests, by dividing each GET request into a plurality
of GET requests, the server transmit queue is reprioritized to
transmit (and web browser 402 is reprioritized to render) the
higher priority components of each of the GETs first. In
particular, if one original GET request corresponds to a huge
image, the impact of the huge image blocking all the other
GET requests would be lessened. As a result, the latency of
seeing the images from the other GET requests is reduced.

In some embodiments, the segment sizes (e.g., the percent-
ages of the original image file) delivered to web browser 402
in response to the plurality of GET requests may be tuned
dynamically based on network load, network bandwidth, or
other specifics of a user’s connection. For example, the size of
the first segment may be only 10% of'the total image on a high
latency and low bandwidth connection, while the size of the
first segment may be 90% of the total image on a low latency
and high bandwidth connection.

FIG. 5 is a diagram illustrating an embodiment of a flow
diagram 500 for optimized delivery of an image resource
associated with a webpage. Flow diagram 500 provides an
example for the static case disclosed above. The steps shown
in flow diagram 500 are performed on web browser 402,
client 406, and edge server 408.

With reference to FIG. 5, at 502, to display a webpage (e.g.,
webpage 200 as shown in FIG. 2), web browser 402 sends an
HTTP request message to edge server 408 requesting the
HTML webpage file corresponding to the webpage. After
edge server 408 locates the requested HTML webpage file,
edge server 408 parses the HTML webpage file, injects client
406 into the HTML webpage file, and then sends the HTML
webpage file to web browser 402 in an HTTP response mes-
sage at 504. Client 404 is then up and running.

At 506, web browser 402 parses the HTML webpage file
and builds a DOM tree to represent the various components of
webpage 200 in a local memory. For example, when the
image tag (shown as in FIG. 2) is

US 9,253,013 Bl

7

parsed by web browser 402, the image is represented as an
image object, and the image object is inserted into the DOM
tree accordingly.

After the DOM tree is created, the DOM tree is traversed to
retrieve any dependent resources indicated by any of the
nodes in the DOM tree via a network. For example, the image
object corresponding to the static image tag in webpage 200
redirects web browser 402 to fetch an image file from an
URL. At 508, web browser 402 sends a GET request in its
native form to edge server 408. Since the GET request is sent
directly from web browser 402, the GET request is not
stamped with any signature.

At510, edge server 408 sends dummy content in response,
causing web browser 402 to create a dummy node in the
DOM tree. Edge server 408 also notifies client 406 that a
dummy node corresponding to the image resource has just
been created in the DOM tree. At 512, client 406 binds to the
dummy node.

At 514, client 406 sends a request to edge server 408
requesting a first segment of the image file to be downloaded.
Note that the underlying communication protocol utilized
between client 406 and edge server 408 can be any one of
many protocols, including proprietary protocols or standards-
based protocols such as HTTP. In some embodiments, the
request message sent by client 406 may include different
information, including the URL of the dependent resource,
the dimensions of the image, and the like. In some embodi-
ments, the request message may also include an indication of
how the image should be segmented. For example, the request
message may specify a percentage (e.g., 70%) of the total size
of the image to be downloaded. In some embodiments, edge
server 408 determines a percentage of the total size of the
image to be downloaded based on network conditions and the
like.

At 516, edge server 408 sends the first segment of the
image file to client 406. For example, the first segment may be
the first scan of a progressive JPEG image, containing the
lower frequency components of a progressive JPEG image.
Client 406 then uses method API calls to refresh the dummy
node in the DOM tree with the received image file, and the
initial lower quality image can be rendered on the screen.

At 518, client 406 sends another request to edge server 408,
requesting the remaining portions of the image file to be
downloaded. At 520, edge server 408 sends the remaining
portions (e.g., the remaining 30%) of the image file to client
406. For example, the second segment may be the second
scan of a progressive JPEG image, containing the higher
frequency components of the progressive JPEG image. Client
406 then uses method API calls to refresh the image node in
the DOM tree with the received image file, and a sharper and
higher quality image can be rendered on the screen.

In some embodiments, the refreshing of the image node
can be reprioritized based on user actions, user profiles, the
statistical behavior of many users in accessing CDN content,
or other network profiles.

In some embodiments, the refreshing of the image node
can be reprioritized based on user actions. During a browsing
session, a user may scroll to the bottom of a webpage before
the webpage is loaded to completion. A user may also expand
or minimize certain portions of the webpage. These and other
user actions can be used to reprioritize the refreshing of the
nodes in the DOM tree. For example, if it is detected that the
user has scrolled to the bottom of a webpage, then client 406
may delay or disable the refreshing of an image node corre-
sponding to an image that is no longer in the display zone.

In some embodiments, the refreshing of the image node
can be reprioritized based on CDN content access statistics.

10

15

20

25

30

35

40

45

50

55

60

65

8

For example, statistics may indicate that very few users
choose to look at images on the bottom left corner of the
webpage. In this case, client 406 may delay or disable the
refreshing of the image nodes corresponding to those images.

FIG. 6 is a diagram illustrating an embodiment of a flow
diagram 600 for optimized delivery of an image resource
associated with a webpage. Flow diagram 600 provides an
example for the dynamic case disclosed earlier. The steps
shown in flow diagram 600 are performed on web browser
402, client 406, and edge server 408.

With reference to FIG. 6, at 602, to display a webpage (e.g.,
webpage 200, as shown in FIG. 2), web browser 402 sends an
HTTP request message to edge server 408 requesting the
HTML webpage file corresponding to the webpage. After
edge server 408 locates the requested HTML webpage file,
edge server 408 parses the HTML webpage file, injects client
406 into the HTML webpage file, and then sends the HTML
webpage file to web browser 402 in an HTTP response mes-
sage at 604. Client 404 is then up and running.

At 606, web browser 402 parses the HTML webpage file
and builds a DOM tree to represent the various components of
webpage 200 in a local memory. When the script tag (as
shown in FIG. 2) is parsed by web browser 402, a JavaScript
is executed. If the JavaScript creates an image node, then the
corresponding DOM core level 1 method API call(s) are
intercepted by client 406 as part of the virtualization of the
DOM, enabling client 406 to control the delivery of the con-
tent related to the node.

At 608, client 406 sends a request to edge server 408
requesting a first segment of the image file to be downloaded.
Note that the underlying communication protocol utilized
between client 406 and edge server 408 can be any one of
many protocols, including proprietary protocols or standards-
based protocols such as HTTP. In some embodiments, the
request message sent by client 406 may include different
information, including the URL of the image resource, the
height and width of the image, and the like. In some embodi-
ments, the request message may also include an indication of
how the image should be segmented. For example, the request
message may specify a percentage (e.g., 70%) of the total size
of the image to be downloaded. In some embodiments, edge
server 408 determines a percentage of the total size of the
image to be downloaded based on network conditions, and
the like.

At 610, edge server 408 sends the first segment of the
image file to client 406. For example, the first segment may be
the first scan of a progressive JPEG image, including the
lower frequency components of a progressive JPEG image.
Client 406 then uses method API calls to refresh the image
node in the DOM tree with the received image file, and the
initial lower quality image can be rendered on the screen.

At 612, client 406 determines whether there are any events
indicating that refreshing of the image node should be
delayed or disabled. For example, the events checked by
client 406 may be any event related to user actions, user
profiles, statistical behavior of many users in accessing CDN
content, or other network profiles as disclosed above.

If events are not detected, then client 406 sends another
request to edge server 408, requesting the remaining portions
of'the image file to be downloaded, at 614. At 616, edge server
408 sends the remaining portions (e.g., the remaining 30%) of
the image file to client 406. For example, the second segment
may be the second scan of a progressive JPEG image, includ-
ing the higher frequency components of the progressive JPEG
image. Client 406 then uses method API calls to refresh the

US 9,253,013 Bl

9

image node in the DOM tree with the received image file, and
a sharper and higher quality image can be rendered on the
screen.

In some embodiments, client 406 may combine more than
one GET requests into a single GET request before sending to
edge server 408, thereby reducing the overall round trip
delays. In some embodiments, server 408 may convert an
image from one format to another format (e.g., from PNG to
JPG plus an alpha channel) before sending the image to client
406 for faster delivery through the network. Client 406 can
convert the image back to the original format before the image
is rendered on the screen.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A method of updating a document object model (DOM),
comprising the steps of:

intercepting an original request by a web browser to update

the DOM- and supplanting the original request by the
web browser to update the DOM by a modified request
to update the DOM, wherein the original request would
have caused downloading of a set of information from a
server to update the DOM had the original request not
been intercepted and supplanted;

forming a request to the server based on the original

request, wherein the request to the server requests down-
loading of a portion of the set of information but not all
of the set of information from the server, wherein seg-
menting the set of information into the portion of the set
ofinformation and an at least an additional portion of the
set of information is based at least in part on a network
condition, and wherein the set of information comprises
an image, and wherein the portion of the set of informa-
tion comprises lower frequency components of the
image, and wherein the at least an additional portion of
the set of information comprises higher frequency com-
ponents of the image, and wherein the portion of the set
of information comprises a first scan of a progressive
JPEG image, and wherein the at least an additional por-
tion of the set of information comprises a subsequent
scan of the progressive JPEG image;

sending the request to the server;

receiving a first response to the request, wherein the first

response to the request includes the portion of the set of
information from the server;

processing the first response to determine a first update to

the DOM; and

applying the first update to the DOM.

2. The method of claim 1, wherein the steps are performed
by a client, and wherein the client communicates with the
server in a client-server protocol.

3. The method of claim 2, wherein the client is transparent
to the web browser.

4. The method of claim 2, wherein the client is injected by
adding JavaScript client code in a head section of a webpage
file.

5. The method of claim 1, wherein the set of information
comprises a dependent resource.

6. The method of claim 5, wherein the dependent resource
comprises an image.

7. The method of claim 1, wherein the set of information is
specified by a uniform resource locator (URL).

10

15

20

25

30

35

40

45

50

55

60

65

10

8. The method of claim 1, wherein the forming of the
request to the server is based at least in part on a type of the set
of information.

9. The method of claim 1, wherein the first response to the
request is based at least in part on a type of the set of infor-
mation.

10. The method of claim 1, wherein the intercepting of the
original request is selectively performed based at least in part
on a type of the set of information.

11. The method of claim 1, wherein intercepting the origi-
nal request by the web browser to update the DOM com-
prises:

intercepting a DOM application programming interface

(API) call made by a JavaScript, wherein the JavaScript
is a portion of a webpage.

12. The method of claim 11, wherein the DOM API call
comprises a DOM core level 1 API call.

13. The method of claim 11, wherein the DOM API call is
supplanted by another DOM API call by a client performing
the steps, and wherein the modified request to update the
DOM comprises the another DOM API call.

14. The method of claim 1, further comprising:

sending a subsequent request to the server, requesting at

least an additional portion of the set of information from
the server;

receiving a second response including the at least an addi-

tional portion of the set of information from the server;
processing the second response to determine a second
update to the DOM; and

applying the second update to the DOM.

15. The method of claim 14, further comprising:

segmenting the set of information into the portion of the set

of information and the at least an additional portion of
the set of information based at least in part on priorities
of different portions of the information.
16. The method of claim 14, wherein the sending of the
subsequent request is delayed based at least in part on a user
action.
17. The method of claim 16, wherein the user action com-
prises a user scrolling to a portion of a webpage not requiring
the set of information.
18. The method of claim 14, wherein the sending of the
subsequent request is delayed based on statistical behavior of
users.
19. The method of claim 1, further comprising:
intercepting another original request by the web browser to
update the DOM, wherein the another original request
would have caused downloading of another set of infor-
mation from the server to update the DOM had the
another original request not been intercepted; and

using the request to the server to request a portion of the
another set of information from the server.

20. The method of claim 1, wherein the downloading of the
set of information would have been in a first format had the
original request not been intercepted and supplanted, and
wherein the downloading of the portion of the set of informa-
tion from the serveris in a second format, and wherein the first
format and the second format are different.

21. A system for updating a document object model
(DOM), comprising:

a processor configured to:

receive a request from a client, wherein the request is
formed by the client based on an original request by a
web browser to update the DOM, and wherein the
original request to update the DOM is intercepted by
the client, and wherein the original request to update
the DOM is supplanted by a modified request to

US 9,253,013 Bl

11

update the DOM by the client, and wherein the origi-
nal request would have caused downloading ofa set of
information from the system to update the DOM had
the original request not been intercepted and sup-
planted by the client, and wherein the request requests
downloading of a portion of the set of information but
not all of the set of information to the client, wherein
segmenting the set of information into the portion of
the set of information and an at least an additional
portion of the set of information is based at least in
part on a network condition, and wherein the set of
information comprises an image, and wherein the por-
tion of the set of information comprises lower fre-
quency components of the image, and wherein the at
least an additional portion of the set of information
comprises higher frequency components of the
image, and wherein the portion of the set of informa-
tion comprises a first scan of a progressive JPEG
image, and wherein the at least an additional portion
of'the set of information comprises a subsequent scan
of the progressive JPEG image; and

send a first response to the request to the client, wherein
the first response includes the portion of the set of
information, wherein the first response is processed
by the client to determine a first update to the DOM,
and wherein the first update is applied to the DOM by
the client; and

a memory coupled to the processor and configured to
provide the processor with instructions.

22. The system of claim 21, wherein the client is transpar-
ent to the web browser.

23. The system of claim 21, wherein the client is injected
by adding JavaScript client code in a head section of a
webpage file.

24. The system of claim 21, wherein the set of information
comprises a dependent resource.

25. The system of claim 24, wherein the dependent
resource comprises an image.

26. The system of claim 21, wherein the set of information
is specified by a uniform resource locator (URL).

27. The system of claim 21, wherein the forming of the
request by the client is based at least in part on a type of the set
of information.

28. The system of claim 21, wherein the first response to
the request is based at least in part on a type of the set of
information.

29. The system of claim 21, wherein the interception of the
original request by the client is selectively performed based at
least in part on a type of the set of information.

30. The system of claim 21, wherein the intercepting of the
original request by the web browser to update the DOM by the
client comprises:

intercepting by the client a DOM application programming

interface (API) call made by a JavaScript, wherein the
JavaScript is a portion of a webpage.

31. The system of claim 30, wherein the DOM API call
comprises a DOM core level 1 API call.

32. The system of claim 30, wherein the DOM API call is
supplanted by another DOM API call by the client, and
wherein the modified request to update the DOM comprises
the another DOM API call.

33. The system of claim 21, wherein the processor is fur-
ther configured to:

receive a subsequent request from the client, wherein the

subsequent request requests at least an additional por-
tion of the set of information to be sent to the client; and

20

30

35

40

45

50

65

12

send a second response including the at least an additional
portion of the set of information to the client, wherein
the second response is processed by the client to deter-
mine a second update to the DOM, and wherein the
second update is applied to the DOM by the client.

34. The system of claim 33, wherein the processor is fur-
ther configured to:

segment the set of information into the portion of the set of

information and the at least an additional portion of the
set of information based at least in part on priorities of
different portions of the information.

35. The system of claim 33, wherein the sending of the
subsequent request by the client is delayed based at least in
part on a user action.

36. The system of claim 35, wherein the user action com-
prises a user scrolling to a portion of a webpage not requiring
the set of information.

37. The system of claim 33, wherein the sending of the
subsequent request by the client is delayed based on statistical
behavior of users.

38. The system of claim 21, wherein another original
request by the web browser to update the DOM is intercepted
by the client, wherein the another original request would have
caused downloading of another set of information to update
the DOM had the another original request not been inter-
cepted, and wherein the request is used to request a portion of
the another set of information.

39. The system of claim 21, wherein the downloading of
the set of information would have been in a first format had
the original request not been intercepted and supplanted, and
wherein the downloading of the portion of the set of informa-
tion from the serveris in a second format, and wherein the first
format and the second format are different.

40. A computer program product for updating a document
object model (DOM), the computer program product being
embodied in a non-transitory tangible computer readable
storage medium and comprising computer instructions for:

receiving a request from a client, wherein the request is

formed by the client based on an original request by a
web browser to update the DOM, and wherein the origi-
nal request to update the DOM is intercepted by the
client, and wherein the original request to update the
DOM is supplanted by a modified request to update the
DOM by the client, and wherein the original request
would have caused downloading of a set of information
to update the DOM had the original request not be inter-
cepted and supplanted by the client, and wherein the
request requests downloading of a portion of the set of
information but not all of the set of information to the
client, wherein segmenting the set of information into
the portion of the set of information and an at least an
additional portion of the set of information is based at
least in part on a network condition, and wherein the set
of information comprises an image, and wherein the
portion of the set of information comprises lower fre-
quency components of the image, and wherein the at
least an additional portion of the set of information com-
prises higher frequency components of the image, and
wherein the portion of the set of information comprises
afirst scan of'a progressive JPEG image, and wherein the
at least an additional portion of the set of information
comprises a subsequent scan of the progressive JPEG
image; and

sending a first response to the request to the client, wherein

the first response includes the portion of the set of infor-
mation, wherein the first response is processed by the

US 9,253,013 Bl
13

client to determine a first update to the DOM, and
wherein the first update is applied to the DOM by the
client.

14

